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Target Mixed-Signal Designs

� Typical RF SoC Processor:
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Target Mixed-Signal Designs

� Typical Serdes SoC Processor:

� Based on: SMI10031 (4:10 CDR Demux)
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Phase-Locked Loops in SoC Processors

� Clock Generator ≡ charge pump-based PLL
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/L

Frequency Divider

Note:  output frequency is integer multiple (L) of the REF frequency



Phase-Locked Loops in SoC Processors

� Typical locking behavior of a charge-pump PLL:

� Loop filter voltage

� Note ripples during the locking procedure
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Limited PFD capture range

Ripple due to R2

In loop filter



Phase-Locked Loops in SoC Processors

� Linear model of a charge-pump PLL 

� Closed loop response:

� Damping factor:
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Phase-Locked Loops in SoC Processors

� Charge pump design considerations:
� Operation:

• Current steering charge pump

• IUP & IDN are always ON

� Noise sources:

• IUP, IDN � Thermal/flicker noise

• Switches � flicker noise• Switches � flicker noise

� Glitches due to switching:

• CLK feedthrough

• Charge time of CUP and CDN

– Minimized by unity gain buffer

• Effect: 
– ref spur (integer PLL)

– nonlinearity (Σ∆ PLL)

� Basic trade-off between noise & glitches in charge pump design
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Phase-Locked Loops in SoC Processors

� Deadzone issue in PFD+CP

� Mention that if pulses are too small, can generate a large difference 
between UP and DN currents in the charge pump

State State 

Condition

Operation

-1 DN=1,UP=0 VCO freq too high
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-1 DN=1,UP=0 VCO freq too high

0 DN=0,UP=0 PLL is in phase lock

1 DN=0,UP=1 VCO freq too low

Locked state:

Pulses too narrow!!  Can cause:

1. Significant reference spurs (integer PLL) 

2. Nonlinearity (Σ∆Σ∆Σ∆Σ∆ PLL)

3. Change in loop dynamics



Phase-Locked Loops in SoC Processors

� Deadzone mitigation in PFD

� Race condition in reset path

� Add a 4th state:
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State State 

Condition

Operation

-1 DN=1,UP=0 VCO freq too high
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-1 DN=1,UP=0 VCO freq too high

0 DN=0,UP=0 PLL is in phase lock

1 DN=0,UP=1 VCO freq too low

Z DN=1,UP=1 PLL frequency held

Locked state:

Delay in reset path widens UP & DN pulses:

1. Less reference spurs (integer PLL)

2. More linear charge pump (Σ∆Σ∆Σ∆Σ∆ PLL)

3. More stable loop dynamics



Phase-Locked Loops in SoC Processors

� VCO design considerations:

� Typical VCO is an LC VCO with cross-coupled inverters

• Cross-coupled FETs to provide –R to cancel LC parasitic resistance

• Capacitor value range determines frequency range of VCO

Optimization Eqns: Design Iteration Steps:
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Phase-Locked Loops in SoC Processors

� Phase noise accumulation in VCOs:

� Noise transfer function of VCO is a HPF:
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Phase-Locked Loops in SoC Processors

� Device noise in digital circuits:  (digital dividers & PFD)

� AM�PM conversion of noise occurs during edge transitions

Zero crossing altered

(AM->PM conversion of noise)

� Digital circuits in the PLL have periodic outputs (digital dividers & PFD):
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Phase-Locked Loops in SoC Processors

� PLL intrinsic noise is sum of noise sources of its components

� Jitter is the phase variation resulting from amplitude noise (AM�PM 
conversion of noise).
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AM����PM conversion of noise



Phase-Locked Loops in SoC Processors

� Summary of PLL noise transfer functions (NTFs):

Block NTF TYPE

PFD LPF

CP LPF
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CP LPF

LF BPF

VCO HPF

FDBK 

DIV
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Phase-Locked Loops in SoC Processors

� Linear model for noise analysis:

� N(f) noise sources obtained from PSS/PNOISE transient simulations
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Objective function:  

minimize N(f) given area constraints 

� convex optimization routine
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Phase-Locked Loops in SoC Processors

� Issues with linear model:

� Does not take into account any non-linearities

• Will see shortly!

� Does not take into account any transient effects 

• One example:  rippling during locking behavior

January 28, 2014 DesignCon 2014, Santa Clara, CA 18



Phase-Locked Loops in SoC Processors

� Fractional-N PLL Basics:

� Why fractional-N ?

• Obtain arbitrary output frequency – not restricted by the REF 
frequency

� Fractional-N operation:

• Example: fn=3/8
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Phase-Locked Loops in SoC Processors 

� Sample simulation of a fractional-N PLL:

� Fout=2.5GHz, Fin=20MHz, fractional ratio=3/8 (3-bit accumulator)
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Phase-Locked Loops in SoC Processors

� How to randomize the periodic jitter?  � Σ∆ modulator

� Basic Σ∆ modulator:

� Linear model of Σ∆ modulator:
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Basic assumption:  There is “sufficient signal activity” at the input of the integrator
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Phase-Locked Loops in SoC Processors

� A digital sigma-delta modulator for use in a PLL:

� MASH1-1-1 sigma-delta modulator

� LFSR included to add sufficient activity at the input

� All flops are clocked by the output of the PLL feedback divider

out

January 28, 2014 DesignCon 2014, Santa Clara, CA 22

LFSR

fn



Phase-Locked Loops in SoC Processors

� Simulation of a sigma-delta modulator
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Phase-Locked Loops in SoC Processors

� Σ∆ Fractional-N Phase-Locked Loop (PLL)
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fn ∈ [0,1)



Phase-Locked Loops in SoC Processors

� SD modulation basics:

Modulator Linear model
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STF � Low-pass filter

NTF � High pass filter

Quantization noise � additive white Gaussian noise only if step size is uniform

If step size is non-uniform, NTF shape breaks down.



Phase-Locked Loops in SoC Processors

� Sigma-Delta Noise Folding:

� Plot shows ideal (0%) and 2% mismatch

� Nonlinearity causes high frequency quantization noise to fold back in-
band

Noise folding causes an increase

in in-band noise level
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in in-band noise level



Phase-Locked Loops in SoC Processors

� Where does non-linear quantization noise steps arise in Σ∆ PLLs?
� Charge pump current mismatch

Charge pump dynamic current mismatch
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Phase-Locked Loops in SoC Processors

� Time-domain Verilog-A model with static current mismatch (UP/DN)

5% mismatch

Mismatch 10KHz 100KHz

0% -127.4 -139.4

2% -107.6 -121.9

5% -87.6 -101

Phase noise (dBc/Hz)
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2% mismatch

Clearly require a transient model to 

capture non-linear effects



Phase-Locked Loops in SoC Processors

� Not all jitter created equal !

TJ

Total Jitter

RJ

Random Jitter

DJ

Deterministic Jitter
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Random Jitter Deterministic Jitter

PJ

Periodic Jitter

BUJ

Bounded Uncorrelated Jitter
DDJ

Data Dependent Jitter

DCD

Duty Cycle Distortion
ISI

Inter Symbol Interference

DDPWS

Data Dependent – Pulse 

Width Shrinkage
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Conventional Modeling Approaches

� Level 0:  Classical SoC
Verification flow 

� Limited functional 
modeling of analog 
blocks

� Ideal clock for Phase-
Locked LoopLocked Loop

� Issues:

� Maintenance and 
verification of analog 
models

� Non-ideal analog effects 
ignored  
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Conventional Modeling Approaches

� Level 1:  Analog Functional 
Verification Flow

� Model analog blocks using 
Verilog-A /Verilog-AMS

� Phase-Locked Loop ideal

� Issues:

� Analog-centric flow –� Analog-centric flow –
limited digital verification

� How to simulate end-to-
end verification in 
reasonable time?

� Maintenance and 
verification of analog 
models
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PFD Verilog-A code
module pll_pfd (REF, VCLK, UP, DN); 

inout REF, VCLK, UP, DN; 

electrical REF, VCLK, UP, DN; 

parameter real vdd=3.3, ttol=10f, ttime=0.2n ; 

integer state; // state=1 for down, -1 for up

real td_up, td_down ;

Initial begin td_up = 1n;  td_down=1n; end

Conventional Modeling Approaches

Initial begin td_up = 1n;  td_down=1n; end

analog begin 

@(cross( V(REF) - vdd/2 , 1 , ttol )) begin

If (state > -1)  state = state - 1;

end

@(cross( V(VCLK) - vdd/2 , 1 , ttol )) begin

If (state < 1) state = state + 1; 

end

V(DN) <+ transition( (state + 1)/2*vdd , td_down , ttime ); 

V(UP) <+ transition( (state - 1)/2*vdd+vdd , td_up , ttime ); 

end 

endmodule
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Conventional Modeling Approaches

VCO Verilog-A code

module pll_vco ( in, out ) ;
inout in, out ;

electrical in, out ;

parameter real vdd = 1.8, 

Kvco = 60e6, // gain [Hz/V]
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Kvco = 60e6, // gain [Hz/V]

vnom = vdd/2, 

fc =2.5e9; 

real freq ;

analog begin
freq = fc + Kvco*(V(in) - vnom) ;

V(out) <+ 
((sin(2*`M_PI*idt(freq)) > 0) ? 
vdd : 0);

end

endmodule



PFD Verilog-AMS

`timescale 10ps / 1ps

module pfd (UP, DN, VCLK, REF);

output UP, DN;

input VCLK, REF;

wire fv_rst, fr_rst;

reg q0, q1;

assign fr_rst = q0 & q1;

VCO Verilog-AMS

`timescale 1ns / 1ps

module vco (in, out);

parameter real fc= 2.5e9;

parameter real Kvco = 60e6;

output out;

electrical in;

reg out;   logic out;

Conventional Modeling Approaches

`timescale 10ps / 1ps

module cp (Iout, gnd, UP, DN);
parameter real cur = 1m;// 

output current (A)

input UP, DN;

electrical Iout, gnd;

real out;

analog begin

CP Verilog-AMS

assign fr_rst = q0 & q1;

assign fv_rst = q0 & q1;

always @(posedge VCLK or posedge

fv_rst) begin

if (fv_rst) q0 <= 0; else q0 <= 1;

end

always @(posedge REF or posedge

fr_rst) begin

if (fr_rst) q1 <= 0; else q1 <= 1;

end

assign UP = q1;

assign DN = q0;

endmodule

reg out;   logic out;

initial out = 0;

always begin

#(0.5e9 / (fc + kvco * V(in)))

out = ~out;

end

endmodule
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analog begin

@(initial_step) out = 0.0;

if (DN && !UP) out = -cur;

else if (!DN&& UP) out = cur;

else out = 0;

I(Iout, gnd) <+ -transition(out, 
0.0, 10n, 10n);

end

endmodule



Comparison of Conventional Modeling Approaches

� Summary comparison table:

Model Level Speed Accuracy SoC sim

friendly?

Linear model ++ 0 N
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Level 0 ++ -- Y

Level 1 - ++ N

Level 1+ 0 ++ N
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Accurate and Time-Efficient Modeling Approach

� Pure Verilog-D model of a PLL

� Why Verilog-D model?

� Event driven simulator � large speedup!!

� Compatibility with SoC simulation environment

� Challenges to Verilog-D model:

� How to model analog charge pump current, analog loop filter voltage?� How to model analog charge pump current, analog loop filter voltage?

� How to deal with any other shortcoming of a pure Verilog-D simulator?

� How to model noise effects in a pure Verilog-D simulator?
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Accurate and Time-Efficient Modeling Approach
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� Generic parameterizable PLL model that can be used in multiple applications

� Application specific shell to interface with rest of the chip

� Time-domain noise models embedded in each block

� Charge pump nonlinearity modeled in time-domain



Accurate and Time-Efficient Modeling Approach

� PLL Loop Filter and charge pump nonlinearity combined
Charge pump dynamic current mismatch
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Steps:

1. Generate a lookup table to capture the charge pump nonlinearity (I - ∆∆∆∆T curve)

2. Compute the transfer function of the loop filter (time-domain)

3. Apply Taylor Series expansion of the composite transfer function of each 

exponential term and limit number of terms fast simulation time).



Accurate and Time-Efficient Modeling Approach

� Lookup table for I – ∆T curve of charge pump:

� Generated from transistor level simulation

� Model for loop filter (time-domain expression):
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� where A0, A1, A2 are coefficients dependent on loop parameters
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Accurate and Time-Efficient Modeling Approach

� Model used to compute the gradient for a time-domain simulation

� Most terms in the form of decaying exponentials:

� Gradient is, therefore, in the form of:

[ ] [ ]ttxf ii βαβα −−−−−= expexp1)( 00 L

[ ] [ ]ttxf βαβα −++−= expexp)(
'

L

or

� To obtain a numerical solution at each iteration, a Runge-Kutta
algorithm (RK4) with variable time step was used.  This provides < 
0.5nV voltage error with linear computations.
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Accurate and Time-Efficient Modeling Approach

� Error analysis between proposed approach and transient simulation:

� Simulation involves PFD+CP+LF over 10ns (with 100MHz reference)

� Absolute error < 0.5nV

� This error curve is periodic

5E-10

6E-10

Peak of voltage error as nonlinear
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Accurate and Time-Efficient Modeling Approach

� Standard Verilog-D VCO model:

`timescale 1ns / 1ps

module vco (in, out);

parameter real fc= 2.5e9;

parameter real Kvco = 60e6;

output out;

electrical in;

• Minimum time-step of Verilog-D simulator is 

1fs � sufficient for most, if not all, digital 

applications

• This is problematic in VCO model:

• Min resolution in computation is 1fs

• If VCO period = 250ps (4GHz), maximum error 

is bounded to 1fs ���� 1/(250ps+1fs) ≅≅≅≅ 16kHz

• Error is too large for most applications!
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electrical in;

reg out;   logic out;

initial out = 0;

always begin

#(0.5e9 / (fc + kvco * V(in)))

out = ~out;

end

endmodule

• This frequency error must be resolved for practical 

use of a VCO model in Verilog-D!



Accurate and Time-Efficient Modeling Approach

� Modified VCO Verilog-D model:

� Make use of the Verilog-D built-in “real” datatype to store the actual VCO 
period

� Steps:

1. Compute the desired VCO period:  VCO_period_desired

1. This will be stored in a “real” datatype for maximum precision

2. Truncate the VCO_period_desired to 1fs:  VCO_period_actual2. Truncate the VCO_period_desired to 1fs:  VCO_period_actual

3. Store the error in an accumulated variable:

1. err_accum = err_accum + (VCO_period_desired-VCO_period_actual)

2. If the err_accum > 1fs, then increase the VCO_period_actual by 1fs and 
subtract 1fs from the err_accum variable.

4. Repeat steps 1-3 at the end of every VCO period

� Result is a zero average frequency error!

• Operation is similar to a fractional-N divider operation

• The “fractional-N spurs” produced are very low.

– Spur levelmax (dB) =                                                    (fvco=1GHz � spur = -120dBc)
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Accurate and Time-Efficient Modeling Approach

� Sample VCO code with zero frequency error:
`timescale 1ps/1fs 

module PLL_vco(VCO_clk, V_ctr);

output VCO_clk;

input V_ctr;

reg VCO_clk;

real V_ctr, VCO_semiperiod, VCO_semiperiod_act, err_acc, fvco, diff, 

Fvco_center;
Code that enables
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always # (VCO_semiperiod_act) ) begin          

VCO_clk = ~VCO_clk;

fvco = Fvco_center +V_ctr*`Kv; // in MHz

VCO_semiperiod = 1/(2*f_run)*1e6; // in psec

diff=VCO_semiperiod - VCO_semiperiod_act; // difference in psec

err_acc = err_acc+diff; // accumulated diff in psec

if (err_acc > 1e-15) begin

VCO_semiperiod_act = VCO_semiperiod + 1f;

err_acc = err_acc – 1e-15;

end

end

endmodule

Code that enables

sub-fs resolution



Accurate and Time-Efficient Modeling Approach

� Noise modeling strategy:

� Obtain noise numbers from transistor level periodic steady-state (pss) 
noise simulation of each PLL sub-block

� Noise will be a composite of flicker and thermal noise
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Accurate and Time-Efficient Modeling Approach

� Flicker noise:

� Based on well-established and efficient Voss-McCartney algorithm to 
generate pink (1/f) noise densities (as well as 1/f3 for VCO up-converted 
flicker noise).

� Illustration of basic idea of Voss-McCartney algorithm:

Composite curve ~ 1/f 

January 28, 2014 DesignCon 2014, Santa Clara, CA 48

Composite curve ~ 1/f 

spectral density



Accurate and Time-Efficient Modeling Approach

� Thermal Noise:

� White noise, uniformly distributed

� Verilog-D built-in function: $rdist_normal()

� Relationship of phase noise & absolute jitter:

( )dfftfStabs ∫
∞

∞−

= πσ φ
22 sin)(4)(

� Noise bandwidth is usually bounded for most applications 

� Thermal noise is both white and uniformly distributed

� Example:  Phase noise  = -160dBc/Hz @ 1GHz from 10MHz to 20MHz

• Jitter :                       nV2

• Jitter*$dist_normal(seed, 0, 1)
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Simulation Results

� Transient simulation validating Verilog-D model

� Difference in behavior due to nonlinear varactor characteristic not being 
modeled in Verilog-D
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Simulation Results

� PLL Simulation Time:

� 200usec transient simulation

� Only Verilog-D model contains noise information

� Using Icarus Verilog running on an Intel i7-2.4GHz machine

Model Type Simulation TimeModel Type Simulation Time

Transistor Level 1636 minutes

Verilog-A 36.3 minutes

Verilog-D 2.75 minutes
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Simulation Results

� FFT of transient simulation with and without noise folding effect:

� Linear & non-linear charge pump

� 20ms transient simulation
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Measured Results

� Semtech’s ACS1790 fractional-N Phase-Locked Loop was used to 
validate model
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Summary

� Reviewed PLL basics and sources of noise in PLLs

� Reviewed classical modeling techniques for PLLs

� Introduced a new model approach based on pure Verilog-D

� Compatible with digital verification flows

� Non-linear noise folding effect in Σ∆ PLL is well predicted

� Noise models were also included to provide a full picture of total � Noise models were also included to provide a full picture of total 
performance

� Modeling methodology can be extended to other analog/RF circuits 
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